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introduction
this report summarises the research activities and findings from the tlri-funded project conducted in year 
13, introductory university and workplace classes, entitled “‘Bootstrapping’ Statistical inferential reasoning”. 
the project was a 2-year collaboration among three statisticians, two researchers, 16 year 13 teachers, seven 
university lecturers, one workplace practitioner, three teacher professional development facilitators, and one 
quality assurance advisor. the project team designed innovative computer-based approaches to develop 
students’ inferential reasoning and sought evidence that these innovations were effective in developing 
students’ understanding of statistical inference.

Key findings
the bootstrapping and randomisation methods using dynamic visualisations especially designed to enhance •	
conceptual understanding have the potential to transform the learning of statistical inference.

Student knowledge about statistical inference is predicated on development of chance argumentation and •	
appreciating the necessity of precise verbalisations.

Within the statistical inference arena, students’ conceptualisation of inferential argumentation requires a •	
restructuring of their reasoning processes.

Major implications
Shifting the learning of inferential statistics from a normal-distribution mathematics approach to a computer-•	
based empirical approach is a major paradigm change for teachers and the curriculum.

developing students’ statistical inferential reasoning involves hands-on activities, connected visual imagery, •	
attention to adequate verbalisations, interpretation of multiple representations, and learning to argue under 
uncertainty.

engaging students’ imagination to invoke dynamic visual imagery and developing their appreciation of causal •	
and non-deterministic argumentation are central to improving their statistical reasoning.

Background to research 
the gap between statistical practice and statistics education is increasingly widening. the use of new computer-
based statistical inference methods using re-sampling approaches is pervading practice (see Hesterberg, 2006, 
for a concise description). However, statistics education remains trapped by what was computable in the 20th 
century (Cobb, 2007). Apart from the fact that computer-based methods are rapidly becoming the preferred 
approach for statistical inference, there are strong pedagogical arguments for introducing the bootstrap and 
randomisation methods into the curriculum. 

First, in most introductory statistics and year 13 courses the conceptual foundations underpinning inference 
are the normal distribution, the Central limit theorem and the sampling distribution of estimates. research 
evidence, however, suggests that these theoretical and mathematical procedures act as a barrier to students’ 
understanding, and the statistical inference concepts are inaccessible to the majority of students (e.g., Sotos, 
Vanhoof, noortgate, & onghena, 2007). Secondly, computer-based methods can be used to make the 
abstract concrete by providing “visual alternatives to classical procedures based on a cookbook of formulas” 
(Hesterberg, 2006, p. 39). these visual alternatives have the potential to make the concepts and processes 
underpinning inference transparent, more accessible, and connected to physical actions. thirdly, students 
experience a set of general approaches or a method that applies across a wide variety of situations to tackle 



SuMMAry     3“BootStrAPPing” StudentS’ underStAnding oF StAtiStiCAl inFerenCe

problems rather than learning multiple and separate formulas for each situation (Wood, 2005). Moreover, 
these methods, coupled with dynamic visualisation infrastructure, allow access to statistical concepts previously 
considered too advanced for students, as mastery of algebraic representations is not a prerequisite. As Wood 
(2005, p. 9) states, simulation approaches such as the bootstrap “offer the promise of liberating statistics from 
the shackles of the symbolic arguments that many people find so difficult”.

even though many statisticians have been calling for reform in statistics education, it is only recently that 
computer-intensive methods are being established in introductory courses using mainly a randomisation-based 
curriculum and commercial software (garfield, delMas, & Zieffler, 2012; gould, davis, Patel, & esfandiari, 
2010; Holcomb, Chance, rossman, tietjen, & Cobb, 2010; tintle, topliff, Vanderstoep, Holmes, & Swanson, 
2012; tintle, Vanderstoep, Holmes, Quisenberry, & Swanson, 2011). in new Zealand, we are taking a 
different approach, using bootstrapping for sample-to-population inference and the randomisation test for 
experiment-to-causal inference and developing purpose-built software to facilitate student access to inferential 
concepts. this current project also builds on the findings and learning progressions developed for years 10 to 
12 (Pfannkuch, Arnold, & Wild, 2011; Pfannkuch & Wild, 2012). Since our proposals for teaching statistical 
inference are new for year 13, introductory university, and workplace students, questions arise about how 
to develop students’ understanding of statistical inference concepts and their reasoning processes. these 
questions were particularly important, as the new year 13 curriculum requires students to use and understand 
these new statistical practice methods of bootstrapping and randomisation for inference.

Methodology
the methodology employed in this study is design research. in cognisance of learning theories (e.g., Clark 
& Paivio, 1991), this research designs learning trajectories that engineer new types of statistical inferential 
reasoning and then revises them in the light of evidence about student learning and reasoning. design research 
aims to develop theories about learning and instructional design as well as to improve learning and provide 
practitioners with accessible results and learning materials (Bakker, 2004). using Hjalmarson and lesh’s (2008) 
design research principles, the development process in this project involved two research cycles with four 
phases: (1) the understanding and defining of the conceptual foundations of inference, (2) development of 
learning trajectories, new resource materials, and dynamic visualisation software, (3) implementation with 
students, and (4) retrospective analysis followed by modification of teaching materials.

the research was conducted over 2 years and went through two developmental cycles. in the first year, there 
was a pilot study involving five year 13 and five university students while in the second year, the main study 
involved 2765 students from throughout new Zealand (14 year 13 classes, seven introductory university classes, 
one workplace class). the main data collected were pre- and post-tests of all the students, pre- and post-
interviews with 38 students, task-interviews with 12 students, videos of three classes implementing the learning 
trajectories, and teacher and lecturer reflections. note there were two versions of the post-test in the main 
study to which students were randomly allocated. time constraints meant that there was a bootstrapping post-
test and a randomisation post-test with some common pre-test items.

Analysis
For the pre- and post-tests, assessment frameworks were developed from the student data for 11 free-response 
questions. two independent people coded the free-response questions and then came to a consensus on the 
final codes. Statistical analyses using r and inZight software were conducted on the coded data as well as the 
multi-choice items. nVivo was used to qualitatively analyse the interview data (Braun & Clark, 2006).
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results
research Question 1: What learning trajectories will facilitate students’ 
conceptual access to the ideas behind statistical inference using bootstrapping 
and randomisation methods?

to answer this question we first explicitly extracted the conceptual foundations underpinning statistical 
inference argumentation. Secondly, we created the desired dynamic visual imagery software for revealing the 
processes behind the new inferential methods (see http://www.stat.auckland.ac.nz/~wild/Vit/). thirdly, we 
developed new verbalisations for describing the processes and representational infrastructure in the software 
that we had created. Since current statistical language was also insufficient to describe the conceptual and 
argumentation ideas that we had uncovered, we developed further verbalisations in order to facilitate students’ 
conceptual access to statistical inference (see Pfannkuch, regan, Wild, Budgett, Forbes, Harraway, & Parsonage, 
2011, for discussion on some of the language issues). Fourthly, we designed and trialled learning trajectories. 
the main principles behind the instruction were that:

learning trajectories should have hands-on simulation activities before moving to computer environments •	
(see Figure 1)

the dynamic visual imagery should allow students to experience and analyse directly and visually the •	
behaviour of a phenomenon and to conceive visually a statistical process that develops over time; a strong 
connection should be maintained between observed data and inferential reasoning (see Figures 2, 3 and 4) 

statistical inference argumentation should be connected to everyday argumentation and students then •	
moved towards an awareness and appreciation of chance argumentation using visual imagery and 
verbalisations where the concept is contained in the language (e.g., tail proportion not p-value). 

Figure 1. Hands-on random re-allocation of observed data to two groups for randomisation test
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Figure 2. Screenshot of bootstrapping method that is revealed one screen at a time: Sample plot showing the observed 
difference in the sample means (in kg), re-sample plots showing with a red arrow the recording of each re-sample 
difference in the means as well as the variability of re-sample means, and then the building of the bootstrap distribution 
where each datum is a re-sample difference in the means

Figure 3.  Screenshot of 1000 bootstrap re-samples
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Figure 4. Screenshot showing 95th percentile bootstrap confidence interval for the difference in mean weights between 
male and female introductory statistics students

the following discussion illustrates how some of these ideas for designing learning trajectories to facilitate 
students’ conceptual access to inferential ideas occurred in practice.

Bootstrap method learning trajectory

one issue that arose for the bootstrap method learning trajectory was the number of multiple images or 
representations for a confidence interval that students were expected to grasp—a band of re-sample medians, 
a distribution of re-sample medians, a numeric interval, a verbalisation of the interval, and a horizontal line 
representation. When eight of the pilot study students were asked in the post-test interview to draw their 
image of a confidence interval for the population median for a plot in a post-test item, none of them drew a 
horizontal line as shown in the software (see Figure 6 top panel). one student drew the bootstrap distribution 
(see Figure 5), one a partial distribution, three drew marks indicating uncertainty in the median, and the other 
three put two vertical lines to indicate the boundaries of the confidence interval. When one of them was 
asked what happened after the confidence interval was calculated on the bottom screen, she said she did 
not remember. lack of familiarity with the confidence interval representation image, the fleeting movement 
of the image from the bootstrap distribution to the original box plot (see Figure 6), the visual dominance 
of the bootstrap distribution and prior knowledge seemed to have played a role in students missing the 
final representation of the confidence interval. From responses to other questions we realised the bootstrap 
distribution was dominant in their imagery. 
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Figure 5. Student image of a confidence interval representation

Since the bootstrap distribution should just be regarded as a calculating device, we decided to lighten the 
colour of the distribution and incorporate a fade button on the control panel so that students’ attention could 
be drawn to a more prominent depiction of the confidence interval (see Figure 6). Furthermore, at the time 
of the pilot study, the resources only gave a numeric representation and an interpretation of the confidence 
interval, not a plot of the original data with the confidence interval represented. these were changed for the 
main study so that the students physically drew the confidence interval on the plot (see Parsonage, Pfannkuch, 
Wild, & Aloisio, 2012, for fuller discussion). 

it is noteworthy that all the main study instructors in their final reports emphasised that the hands-on 
activities were essential for student understanding. the university lecturers, however, were concerned about 
implementation of these activities in their large classes (≈500) because some students seemed to miss the 
instructions. Hence when we design learning trajectories that use dynamic visualisations, we need to be aware 
of how to attract students’ attention to the salient parts and of the importance of physical hands-on actions for 
learning and understanding concepts. 

Figure 6. Screenshot of fade facility to draw attention to confidence interval representation
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Randomisation test learning trajectory

A learning trajectory that combines dynamic visual imagery with discourse has the potential to enhance 
students’ reasoning processes by allowing them to construct or re-construct underpinning ideas. two examples 
are given to demonstrate how visual imagery can assist students’ conceptual access to some of the inference 
ideas behind the randomisation test, while a third example illustrates how some ideas such as argumentation 
remain difficult (see Pfannkuch, Wild, & regan, in press, for fuller discussion).

Example 1. in the pilot study, when students were asked what they found difficult to understand, several 
students said they did not understand what it means for chance to be acting alone. their difficulty seemed 
to be supported by other students, as one pair of students described chance as “it just so happened”, and 
then stated that randomisation was used to “confidently be able to say there is no chance that chance had 
any effect on the results”. When questioned on the hands-on activities that formed part of the randomisation 
teaching sequence (see Figure 1), another pair of students understood the ticket-tearing procedure as “creating 
chance”. Since the idea that chance is acting alone is a central concept in the randomisation method, we were 
concerned about the students’ difficulties with this notion. Consequently new software, designed to visually 
illustrate chance is acting alone, unencumbered by experimental data, was developed. 

the new software module, for example, can demonstrate weights of people being randomly allocated to one 
of two groups with the differences in mean weights of the two groups being recorded in the middle panel of 
the vertical screen and subsequently dropping down to the bottom panel where a randomisation distribution is 
built up (see Figure 7). Students can then see that the absolute differences in mean weights between the two 
groups can be up to 10 kg simply under chance alone. We anticipated that this module would help to elucidate 
the chance is acting alone concept. in fact, when a lecturer in one of the videoed classes was discussing a 
class example where the tail proportion was small (i.e., giving evidence of the treatment being effective), a 
student asked the lecturer whether this meant that the observed differences in centres was a combination of 
chance and treatment effects. Such an insight gives rise to understanding the two possible explanations for the 
observed difference: (1) the variability can be entirely explained by chance factors alone (who happened to be 
randomly assigned to each group, and measurement errors); and (2) the variability requires explanation by both 
chance factors and the treatment factor (Pfannkuch et al., 2011). Hence, it seems that visual imagery afforded 
by the new module has the potential to allow a deeper conceptual access to the chance is acting alone idea.

Figure 7. Screenshot of random re-allocation under chance acting alone
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Example 2. in a main study task, a student who had sat the bootstrap post-test was asked what images he 
had of the randomisation process. initially he tried to explain the term randomisation but after some prompts 
he realised he was being asked to re-create the visual imagery. With gestures and visual imagery he recreated a 
possible scenario as described in the following excerpts:

i guess the example that we’d use is people taking aspirin for heart and people that aren’t and so we have the two 

groups and then we record the data over the trial period and say we see a difference between the results between 

group A and group B or the control and non-control (cf. Figure 8 top panel). We want to kind of see if in fact the 

aspirin is effective in this experiment and so we want to test for chance alone and by testing for chance alone we 

get rid of the non-control.

the middle screen showed the re-allocation of the data and then making new groups essentially and yeah so like i 

said we disregard what group they’re from, put them together and make a population [incorrect language] and then 

we make two new groups and then allocate to those two groups (cf. Figure 8 middle panel).

With gestures he reconstructed an image of the re-randomisation distribution and said: 

i know the end result is to establish a difference between like say two means or two medians and for the end of the 

process i know we establish a tail proportion, that’s what we call it and if the tail proportion is less than 10% then we 

know that chance is probably not acting alone and there’s another variable involved (cf. Figure 9 bottom panel). if it’s 

greater than 10% then we still don’t know if chance is acting alone but it probably is i think, yeah. if it’s greater than 

10% we can’t, we’re not allowed to establish a causal relationship between aspirin and decrease in heart attack. 

in response to a question about whether recreating the visual imagery helped he said: 

that definitely helps, especially with the tail proportion i just remember that arrow. i remember like key numbers 

that just come out in red. red’s a great colour yeah [it means] listen, watch.

this example illustrates how a student was visually and verbally able to re-construct the behaviour of the 
process and the concepts behind the randomisation test. Hence the combination of dynamic visual imagery 
and verbalisations seems to have the potential to facilitate students’ conceptual access to processes behind 
experiment-to-causation inference. However, the interpretation of the tail proportion and the argumentation 
still eludes many students as will be illustrated in example 3.

Figure 8. Screenshot of randomisation test for a memory recall experiment with the treatment group using a visualisation 
technique. Starting with the top panel, each panel is activated sequentially. Data plot shows the observed difference in the 
group means from the experiment (number of words recalled). Re-randomised data shows with a red arrow the result of 
a re-randomised difference in the means. not shown is the building up of the re-randomisation distribution where each 
re-randomised difference in the means is dropped down from the middle panel to the bottom panel (cf. Figure 2).
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Figure 9. Screenshot of randomisation test for a memory recall experiment showing the tail proportion generated.

Example 3. in example 2, the student in his argumentation stated that if the tail proportion was greater 
than 10% “then we still don’t know if chance is acting alone but it probably is I think.” in the randomisation 
post-test main study students were given the question: “Suppose the tail proportion was 0.3. What should 
the researchers conclude?” Similar to the example 2 student, 24.2% of the students also stated that chance 
could be acting alone but this is only half of the argumentation. Better argumentation would be: “They cannot 
conclude anything, it means that chance could be acting alone or maybe some other factors such as the 
treatment could be acting along with chance.” only 6.9% of students could articulate such argumentation. 
Another 7.7% of students stated chance was acting alone, which is incorrect. (unfortunately, the other 61.2% 
of the students seemed to misunderstand the question, the main error being an inability to convert 0.3 to a 
percentage, resulting in about half of all students thinking that 0.3 was less than 10%.) 

For the students who interpreted 0.3 correctly, however, their responses were not surprising since the tail 
proportion idea has not changed through our visualisations—only an appreciation of how the tail area is 
obtained has changed; that is, it is not a numerical value rather a part of an understandable distribution. 
interpretation of a large tail proportion and the indirect nature of the logic of the argument seem to 
remain a problem with this method as it was with normal-based inference. even though we use this type of 
argumentation in everyday life, we think the argumentation will continue to remain difficult as it appears 
to be an alien way of reasoning (thompson, liu, & Saldanha, 2007), particularly when overlaid with chance 
alone, the re-randomisation distribution of differences in means, and tail proportion ideas (Budgett, Pfannkuch, 
regan, & Wild, in press).

Hence the randomisation test and our dynamic visualisations are not a panacea for making inferential 
reasoning totally accessible to students. We believe, however, that the incorporation and reinforcement of 
key underpinning concepts such as mimicking the data production process, chance is acting alone, the tail 
proportion and the re-randomisation distribution are more accessible and transparent to students. in particular, 
the dynamic visualisations allowed students to view the process of re-randomisation as it developed and grew 
into a distribution, giving students direct access to the behavior of the chance alone phenomenon. Compared 
to the mathematical procedures of significance testing, we believe the students did learn more about statistical 
inference using the randomisation method (cf. tintle et al., 2011, tintle et al., 2012).
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research Question 2: How can students be stimulated to develop inferential 
concepts and what type and level of inferential reasoning can they achieve?

to answer this question, two items from the tests will be discussed to illustrate the type and level of inferential 
reasoning students achieved.

Inference and the bootstrap method 

in the bootstrap post-test, as part of a longer question, students were asked to interpret the bootstrap 
confidence interval in Figure 10, which was derived from the weekly incomes of a sample of 21 new Zealanders 
who worked full-time and had a bachelor’s degree.

Figure 10. Confidence interval plot

of those who responded, 2.0% gave idiosyncratic responses, 20.3% read the data rather than interpreting 
it (e.g., “the bootstrap confidence interval is from 693.3 to 937.1”), 21.7% interpreted the data in terms of 
weekly income rather than mean weekly income, while 56.1% interpreted the interval correctly. For those 
77.7% of students who interpreted the data, 80.4% used language such as “it is a fairly safe bet”, indicating 
a recognition of the uncertainty present when drawing a conclusion using a confidence interval. two issues 
arise from these results. the first issue is student understanding of the requirements of the question; that is, 
understanding the use of the language “interpret”. the second issue centres on a conceptual understanding of 
the bootstrap distribution and its consequent bootstrap confidence interval and the language used to convey 
the concept. From follow-up interviews, we noted that a failure to use the correct language may indicate that 
the student: (1) does not know that the confidence interval is giving an estimate for the population mean, (2) 
does know but fails to appreciate that the lack of the critical word mean changes the interpretation, (3) has not 
made the conceptual connection between the bootstrap distribution and the confidence interval, or (4) has a 
fragmented understanding of the overall purpose of the bootstrapping process. 

two students in follow-up interviews who interpreted the interval using the term “weekly income” are given as 
examples. 

For a prior item, a student was simply asked to explain how he would label the bootstrap distribution x-axis 
(see Figure 11). on responding that the label would be the mean weekly incomes, he immediately recognised 
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that his answers to several questions were wrong and he changed them, including his confidence interval 
interpretation, without further prompting. it seemed that the interview prompt had made him realise that the 
use of the word mean was critical for interpretation. 

Figure 11. Bootstrap distribution

Another student recalled from the hands-on activity that the bootstrap distribution was a plot of the re-sample 
means and when asked to clarify the difference between weekly income and mean weekly income she said:

For the weekly, just the weekly income they would be different pays, different incomes.  they can’t say precisely 

which one each person would get. So with the typical one [mean one] they would get the confidence interval and 

they can just assume that they get paid between this and this, because not every person gets paid the exact same.

She knew that for the mean weekly income, one obtains a confidence interval, she knew that the interval was 
derived from re-sample means and the label on the bootstrap distribution would be the average, she verbalised 
the words “typical”, “mean”, “median”, and “average”, and yet she still believed her interpretation to be true. 
it seemed that this student had a fragmented understanding of the overall purpose of confidence intervals and 
a tenuous grasp on the correct use of statistical language. 

in the student interviews, however, it seemed that prompting the use of visual imagery from the dynamic 
visualisations or the hands-on activities stimulated students to step closer towards a better understanding of 
how to reason from confidence intervals.

Inference and the randomisation test 

in the pre- and post-test students were asked to give two possible explanations for the observed difference for 
an experiment (see Figure 12). Many students were able to identify treatment explanations for the observed 
difference in the pre-test (79.2% of those who responded) but chance explanations were lacking. (note that 
half the students did the post-test question and 827 of these students sat both tests.)  
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Fish oil and Blood Pressure Study
(based on a study by H. Knapp and g. Fitzgerald, (1989), n engl J Med, 320(16), 1037-43)

Prior to conducting this study, the researchers conjectured that those on a fish oil diet would tend to 
experience greater reductions in blood pressure than those on a regular oil diet. researchers randomly 
assigned 14 male volunteers with high blood pressure to one of two four-week diets: a fish oil diet and a 
regular oil diet. therefore the treatment is the fish oil diet while the regular oil diet is the control. 

each participant’s blood pressure was measured at the beginning and end of the study, and the reduction 
was recorded. the resulting reductions in blood pressure, in millimetres of mercury, were:

Fish oil diet: 8 12 10 14 2 0 0

regular oil diet: –6 0 1 2 –3 –4 2

Plots of the data are:

-6 -4 -2 0 2 4 6 8 10 12 14 16
B P _R educ tion

C ollection 1 Box P lot

-6 -4 -2 0 2 4 6 8 10 12 14 16
B P _R educ tion

C ollection 1 Dot P lot

Figure 2. dotplots of reductions in blood pressure          Figure 3. Box plots of reductions in blood pressure

the observed data in Figures 2 and 3 show that the reduction in blood pressure values for the fish oil group 
tends to be greater than those for the regular oil group. Write down the tWo MAin possible explanations 
for this observed difference as shown in Figures 2 and 3. 

the two main possible explanations for this observed difference are:A. 

______________________________________________________________________________________i. 

______________________________________________________________________________________ii. 

Which one of your possible explanations (i. or ii.) would the researchers test using a B. statistical test? 

______________________________________________________________________________________

Figure 12. Question item in the pre-test and randomisation post-test

table 1 gives a summary comparison between the pre- and post-test chance explanation responses. NR means 
no response, NC no chance ideas present, MC moving towards chance ideas (e.g., “There were errors made in 
the study which means the results are wrong”; “People in the regular diet may have had higher blood pressures 
at the beginning”), and C chance ideas present (e.g., “Due to chance that the blood pressure levels in one 
group were unexpectedly volatile compared to the other;” “Complete chance can be held accountable alone”). 
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table 1. Summary comparison between pre- and post-test chance explanation responses

Post-test

NR NC MC C Totals

Pr
e-

te
st

NR 61 52 20 106 239 (28.9%)

NC 41 144 42 188
415

(50.2%)

MC 8 14 27 93 142 (17.2%)

C 1 3 3 24
31 

(3.7%)

Totals 111 (13.4%) 213 (25.8%) 92 (11.1%) 411 (49.7%) 827

in the pre-test, 50.2% (nC) of students demonstrated that they had no chance ideas present while only 3.7% 
(C) of students gave a chance explanation, a surprising result given that chance ideas are fundamental in 
understanding statistics. in the post-test 25.8% (nC) showed no chance explanation present while 49.7% (C) 
were able to give a chance explanation. if C is considered the highest category and nr the lowest category, 
there was a mean difference improvement of 1.01 categories  (95% C.i. = [0.93, 1.10]). there is extremely 
strong evidence (p-value≈0) that students are now considering chance explanations.

it is also noteworthy that in the pre-test, 20.5% of all students who responded had both a treatment and 
some kind of chance idea explanation (MC or C), with 44.5% of them stating they would test the chance 
explanation, while in the post-test 61.4% of all students who responded had the two explanations with 82.9% 
of them testing the chance explanation (data not shown). Hence students seemed to have been stimulated to 
now consider the two main explanations that the treatment is effective or chance is acting alone and that the 
chance is acting alone is the explanation that is tested.

research Question 3: When students experience methods such as 
bootstrapping and visualisations, what new issues arise in their reasoning 
processes?

Bootstrap method 

An aim of the bootstrap learning trajectory was to engage students in the “big ideas” underpinning the 
bootstrap method. in the main study, bootstrap post-test students were asked to explain one key idea 
underpinning the bootstrap process to estimate a parameter. About 32.9% of the students who responded 
could verbalise the “big ideas” of a connection between multiple re-sampling from a population and multiple 
re-sampling from a sample, with a small percentage of them (2.5%) specifically mentioning that the variability 
in the re-sample means mimics the variability in the means from multiple population samples. the rest of the 
students focused on describing the bootstrap procedure (50.7%) and/or mentioned other key ideas such as 
all estimates are uncertain, the bootstrap method works most of the time, or that samples must be random. 
While it is pleasing to see that a number of students are beginning to think beyond the mechanics of obtaining 
a bootstrap confidence interval, there is an issue about how to draw students’ attention and orientation 
towards grasping the big ideas. More dynamic visual imagery can be designed to link multiple sampling from 
a population to multiple re-sampling from a sample but the visual argument for similarity in the uncertainty 
bands obscures a much deeper conceptual inversion argument about the bootstrap confidence interval 
generated (see Pfannkuch, Wild, & Parsonage, 2012 for a much fuller discussion). the inversion argument issue 
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is not currently part of students’ reasoning process and the question remains about whether, how and when it 
should be introduced to students. 

Randomisation test

in the randomisation post-test for the main study, as part of a question on an experiment studying the effect of 
fish oil on blood pressure students were asked to respond to the following item in Figure 13. the item was not 
part of the teaching and learning, as we wished to explore student reasoning in a related context.

in reporting the findings of this study a newspaper stated: 

People will lower their blood pressure with a fish oil diet.

this statement is statistically incorrect. explain why and rewrite the statement correctly.

Figure 13. item in post-test

What we wished to see were four distinct ideas numbered as follows: 

it is a fairly safe bet (1) that males with high blood pressure similar to those in the study (2) will (3) tend to (4) lower 

their blood pressure with a fish oil diet. 

these four distinct ideas of uncertainty which students could address are: (1) the rare occurrence idea that a 
wrong conclusion could be drawn (26.0% of students who responded to this item mentioned this idea), (2) 
a very carefully stated generalisation (25.9%), (3) the causal inference idea for experiments recognising the 
difference between sample-to-population and experiment-to-causation inferential reasoning (22.4%), and 
(4) the tendency idea that the group as a whole improves, not every individual (23.2%). note students could 
address more than one idea.

the rare occurrence, generalisation, and tendency ideas acknowledged in some students’ reasoning processes 
are not surprising as they are common to sample-to-population inference. However, we are not convinced 
they have a conceptual understanding of their application to experiment-to-causation inference, as our 
learning trajectory did not address these ideas sufficiently. therefore a new issue is to think about learning 
approaches that will incorporate these three ideas of uncertainty in order to enhance students’ reasoning and 
understanding.

Since 19.2% of students stated that a causal inference cannot be made, a common misconception seems to 
be distinguishing between experimental and observational studies. Possible reasons are: (1) language, with 
students believing that the term “observed difference” indicates an observational study (e.g., “you cannot 
make a causal statement with observed data”); (2) confusion between two very different types of inference, 
possibly because the two methods were taught consecutively whereas in reality they would be separated in 
time; or (3) dominance of prior knowledge as sample-to-population inference is familiar to students whereas 
experiment-to-causal inference is new. despite time constraints being a possible factor for the confusion 
between the two methods and for the fact that only 22.4% of students seemed to recognise the causation 
idea, we believe that an issue to address is how to re-structure students’ reasoning and orientation towards 
recognising that random allocation to two treatment groups allows for a one-factor causal interpretation. 
Another area to address is creating visual imagery for experiment-to-causation inference. For sample-to-
population inference, there are many images to illustrate the idea of taking a random sample from a population 
to then drawing conclusions about the population from that random sample. the imagery for experiments from 
using volunteers to drawing conclusions seems much more difficult to achieve but we believe that some visual 
imagery would be helpful in cementing the difference between the two types of inference.
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limitations

the main limitation in this research study is ecological validity. Since bootstrapping and randomisation methods 
will be introduced into year 13 in 2013, many of the teachers implemented the learning trajectory outside 
normal school hours, teaching students before school, at lunch times or after school, which often resulted in 
fragmented delivery and attendance. Also, in a normal school programme, the two methods would not be 
taught consecutively. At the university level, introducing a new element into a very large course (2000 students) 
has many flow-on effects, including time constraints for assessing students for a research project. Hence a short 
learning trajectory was assessed when in fact students returned to these methods and ideas later on in the 
course. For the workplace students, a one-day course was set up, which is normal practice for such students. 
learning occurs over time and therefore any findings from this research are limited by time and delivery 
constraints imposed by working with students where qualifications are paramount.

Major implications

our research appears to show that the dynamic visualisations and learning trajectories that we created have 
the potential to make the concepts underpinning statistical inference more accessible and transparent to 
students. Shifting the learning of inferential statistics from a normal-distribution mathematics approach to 
a computer-based empirical approach is a major paradigm shift for teachers and the curriculum. Secondary 
teachers, examiners, moderators, teacher facilitators, resource writers, other stakeholders in the school system, 
and university and workplace lecturers will need professional development. Stakeholders will not only need 
to shift from a mathematical approach to a computer-based approach but also shift their pedagogy from a 
focus on sequential symbolic arguments towards more emphasis on a combined visual, verbal, and symbolic 
argumentation. these new computer-based methods require recognition at the government level that 
technology is an integral part of statistics teaching and learning and that professional development is essential.

developing students’ statistical inferential reasoning requires an understanding of the underpinning concepts 
and argumentation. these concepts and argumentation are intertwined with an understanding of the nature 
and precision of the language used. Students struggled to verbalise their understandings. We also struggled to 
define the underlying concepts and adequately and precisely communicate satisfactory verbalisations for the 
bootstrapping and randomisation method processes and the statistical inferential reasoning and argumentation 
used in the learning trajectories. Stimulating such thinking skills will require learning trajectories that involve 
hands-on activities, connected visual imagery, attention to adequate verbalisations, interpreting multiple 
representations, and learning to argue under uncertainty.

Within the statistical inference arena, students’ conceptualisation of inferential argumentation requires a re-
structuring of their reasoning processes towards non-deterministic or chance argumentation coupled with 
an appreciation of causal argumentation for experimental studies. invoking mental images of the dynamic 
visualisations for the bootstrap and randomisation methods can help students to re-construct inference 
concepts. However, the tail proportion argumentation for the randomisation method, in common with any 
other form of significance testing, remains difficult for students to grasp. Similarly the inversion argument for 
the bootstrap confidence interval generated, in common with any other method, is difficult. An implication 
of these findings is that much more of statistical inference reasoning seems to be more accessible to students 
using these methods but some of the argumentation and ideas remain elusive and difficult to comprehend.

the new Zealand year 13 statistics curriculum and the related university introductory statistics course are 
leading the world, which has led to many international invitations. About 1200 teachers nationally have 
become aware of our innovative developments through our presentations and workshops. Also the project has 
led to increased leadership capacity and researcher capability in statistics education in new Zealand. therefore 
it is vital that more research is conducted into these new approaches to statistical inference and the consequent 
development of students’ reasoning processes and statistical argumentation. 
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inZight data analysis free software, from www.stat.auckland.ac.nz/~wild/inZight/ 

nVivo qualitative data analysis software; QSr international Pty ltd. Version 9, 2010

r data analysis open-source software. http://cran.stat.auckland.ac.nz/  
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