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This report summarises the research activities and findings from the TLRI-funded project entitled Visualising 
Chance: Learning Probability Through Modelling. This exploratory study was a 2-year collaboration among two 
researchers, two conceptual software developers/interactive graphics experts, three university lecturers/
practitioners, one master’s student, four teacher observers and one quality assurance advisor. The project team 
designed innovative software tools and associated tasks which aimed to expose introductory students to a 
modelling approach to probability. The study sought to discover what conceptual understanding of probability 
and what probabilistic reasoning could be promoted from such an approach.

Key findings
•	 The ability to see structure in, and apply structure to, a problem situation is an important aspect of 

probability modelling and this ability is founded on the key concepts of randomness, conditioning, 
distribution, and mathematics.

•	 The four dynamic visualisations and tasks, designed to expose students to a modelling approach to 
probability, have the potential to deepen and enhance students’ probabilistic reasoning.

•	 Engagement, an important component for the learning of probability, may be promoted by providing 
relatable contexts and by incentivising students to make conjectures prior to interacting with technological 
tools. 

•	 Flexible use of representations, essential for developing probabilistic thinking, may be supported through 
the experiencing and linking of a variety of chance-generating mechanisms.

Major implications of these findings 
•	 Seeing structure within problem situations draws upon a diverse range of learning experiences in multiple 

contexts and requires teaching strategies that deliberately enhance transferability to new situations.

•	 New learning trajectories incorporating dynamic visualisations require careful development to support 
students as they experience simple through to more complex representations.

•	 From a pedagogical perspective, encouraging students to make conjectures which they then test and 
analyse through the use of technological tools requires careful consideration about how to scaffold students’ 
thinking and how to draw their attention to salient features. 

Background to research 
Random events and chance phenomena permeate our lives and environments. Considering the number of 
different disciplines that require the application of probabilistic concepts and understanding of probabilistic 
reasoning, the learning of probability is essential to prepare students for everyday life.  However, the current 
approach to teaching probability draws on the tradition of classical mathematical probability, resulting in a 
formal approach which may not be accompanied by a substantial understanding of the chance phenomena 
that the mathematics describes (Moore, 1997). Such an approach renders many probability ideas inaccessible 
to most students (Chernoff & Sriraman, 2014; Greer & Mukhopadhyay, 2005). Numerous education researchers 
and statisticians (e.g., Chaput, Girard, & Henry, 2011; Greer & Mukhopadhyay, 2005; Konold & Kazak, 2008) have 
emphasised that probability is about modelling real world systems in order to understand and make predictions 
about that system. Also, probability modelling using simulations is the practice of applied probabilists, which 
further amplifies the disconnect between education and actual practice (Pfannkuch & Ziedins, 2014). Hence 
there is a general consensus that students should experience both theoretical and data modelling approaches 
to probability.
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Access to technology has created an opportunity for students to: experience random behaviour through 
simulations; create probability models and to test, with data, the adequacy of the models for mimicking real-
world systems; visualise chance through the creation of new representational infrastructure; and gain access 
to concepts that were previously inaccessible (Sacristan et al., 2010). Furthermore, according to Shaughnessy 
(2007, p. 995), “technological tools are very important for helping students to transition from those naïve 
conceptions to richer more powerful understanding of statistical concepts”.

Technology, and the visual imagery offered, however, is not sufficient for conceptual growth. Also important is 
the teacher’s and students’ articulation of how they make sense of, and explain in their own words, what they 
see and understand and thereby create meaning from the images (Makar & Confrey, 2005). Such sense-making 
reflection between teacher and students is paramount in developing conceptual reasoning (Bakker, 2004). 

Methodology
The methodology employed in this study is action research. Such an approach reduces the perceived gap 
between research and practice by having practitioners identify problematic areas and work together with 
researchers such that the results are of direct use within their educational setting. As noted by Burns (2000, 
p. 443), action research is “a total process in which a ‘problem situation’ is diagnosed, remedial action planned 
and implemented, and its effects monitored if improvements are to get underway”; thus it seemed particularly 
fitting for the current study. The action research process comprised five phases. In the first phase, the essential 
conceptual ideas required for probabilistic thinking, and the problematic areas for students, were identified 
in three ways: by interviewing seven people who use stochastic modelling and probability in their professions; 
by having collaborative meetings between the researchers, practitioners, and software conceptual developers 
in the research team; and by conducting a review of the literature. The second phase involved a qualitative 
thematic analysis of the interviews (Braun & Clarke, 2006), project team deliberations, and a literature review to 
identify the main problem areas and conceptual ideas that needed addressing. In the third phase, the project 
team identified four significant areas for development of probabilistic reasoning for which tasks and software 
tools could be developed. For each area, a conceptual analysis of the underpinning concepts and possible 
conceptual pathways was undertaken. Considerable time was invested in devising tasks that would develop 
students’ probabilistic reasoning and incorporate learning probability through using a modelling perspective, 
visual representations, and theory. The fourth phase involved piloting each of the four software tools and 
associated tasks with three pairs of students who had already completed an introductory probability course. In 
the fifth phase, a retrospective analysis was carried out, followed by modification to the tools and tasks.

Given the exploratory nature of the study, there are analogies to a pre-clinical trial in which one investigates, 
experiments, and modifies a proposed intervention within a laboratory setting prior to implementation in 
humans (Schoenfeld, 2007). In this study, our interactions with the participating students can be considered 
laboratory work, with the aim of refining the tools and tasks based on our findings in order to implement in 
classroom-based settings in the future.

The research was conducted over 2 years. At the start of the first year, the interviews with the seven people 
who used stochastic modelling and probability in their professions were carried out. These practitioners 
were involved in a diverse range of fields (e.g., ecology, queueing and networks, hydroelectricity, operations 
management, agriculture, commerce, and the development of probability theory). Two prototype software 
tools and associated tasks were also developed during the first year, with another two tools and tasks being 
developed in the second year. Over the 2-year period, each of the four tools and tasks were trialled on three 
pairs of students. The main data collected were interviews with the seven practitioners, and pre-assessments, 
task interviews, and reflection interviews with all of the participating students.

The student participants in this study were in their first year at university (ages 18–19) and had completed an 
introductory probability course. Because of our university’s ethical requirements, whereby it was determined 
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that students participating in our study could be perceived as having a potential grade advantage over other 
students, we could not recruit them before or during the course. Hence the student participants in our study 
could be presumed to have acquired a working knowledge of joint and conditional probability distributions, the 
Poisson process, and Markov processes from a mathematical perspective.

Analysis
An inductive thematic qualitative analysis was conducted on the practitioner interviews (Braun & Clark, 2006). 
Two research team members deliberated through a series of meetings to reach consensus on the themes 
that emerged from the interviews. Another team member undertook an independent thematic analysis on the 
transcribed interview data with the assistance of the software package NVivo, version 10 (2012). Further analysis 
and modification continued after the interviewees read, commented on, and reacted to a draft manuscript 
which described the process (Pfannkuch et al., in press).

The students’ interactions with two of the tasks and tools were qualitatively analysed against appropriate 
theoretical frameworks to identify salient features of the students’ understanding that seemed to emerge 
during the study. The other two tasks have been partially analysed and thus preliminary findings are presented.

Results
The research question was:

What conceptual understanding of probability and what probabilistic reasoning is promoted when introductory 
university students are exposed to a modelling approach to probability and to learning strategies focused on 
dynamic and static visual imagery and language?

To answer this question, we first established the essential conceptual ideas required for probabilistic thinking 
from a qualitative analysis of interviews with seven people who used stochastic modelling and probability in 
their professions. From the interviews it emerged that underlying the practice of probability modelling are 
fundamental notions of seeing structure and applying structure (Pfannkuch et al., in press). Seeing particular types 
of structure within a problem context is based on the development of an intuition or perspective of seeing 
the world through the lens of probability. Essential to the development of this intuition, which emerged from 
the interviews as necessary for probability thinking and modelling (see Figure 1), are four main interconnected 
building blocks: randomness, distribution, conditioning, and mathematics.
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Figure 1. Framework of main building blocks for probability thinking and modelling  
(Pfannkuch et al., 2016)

Since most of the interviewees were also teachers of probability, we asked them about problem areas that 
their students encountered when learning about probability. Using a thematic analysis method we identified 
the following main perceived problem areas for their students: the disposition or the willingness to engage, 
persevere, and understand probability; the idea of distribution; the ability to move between and within 
representations including the representation of the problem in words; mathematics; and randomness and 
decisions. In addition to the specific problematic areas mentioned by the practitioner interviewees, we also 
conducted a review of the probability education literature which documents many misconceptions in peoples’ 
thinking (Kahneman, 2011; Nickerson, 2004). In particular, Bayesian-type problems presented difficulties for 
many, with the base rate fallacy and the confusion of the inverse misconception dominating people’s reasoning 
(Koehler, 1996; Villejoubert & Mandel, 2002). Watson and Callingham (2014) noted that students have difficulty 
in employing proportional reasoning when interpreting frequency tables. 

In terms of possible strategies to enhance student understanding of probability, some of the main themes 
that emerged from the interviews were to: incentivise students to engage; use visual imagery; allow students 
to play around with chance-generating mechanisms; develop strategies to enable students to link across 
representations; and use contexts that students can relate to. With regard to the misconceptions noted within 
the probability education literature, much effort has been directed into researching the pedagogical issues 
underlying Bayesian-type problems, with approaches such as presenting probability information in frequency 
tables rather than in probability format (Gigerenzer & Hoffrage, 1995; Gigerenzer, 2014), and by providing 
accompanying visual representations (Garcia-Retamero & Hoffrage, 2013; Navarette, Correia, & Froimovitch, 
2014). Furthermore, Watson and Callingham (2014) suggested that a simple visual structure may be beneficial 
for students and that prompting students to consider relationships between the numbers in frequency tables 
might enhance their proportional reasoning, an important underlying concept for probability.

The problem areas and misconceptions identified by the interviews and documented in the literature, in 
conjunction with the strategies proposed, informed the design of four tools and their associated tasks. A 
prominent feature of each task was allowing students to make and test conjectures which has been suggested 
as a method for motivating students to engage (Garfield, delMas, & Zieffler, 2012). We developed a six-principle 
framework to guide the  development of the tools and tasks. The principles were to encourage students to:
•	 make conjectures 
•	 test their conjectures against simulated data 
•	 link representations 
•	 perceive dynamic visual imageryrelate to contexts 
•	 interact with chance-generating mechanisms.

The next sections discuss the four tools and their associated tasks.



SUMMARY   6VISUALISING CHANCE: LEARNING PROBABILITY THROUGH MODELLING

The eikosogram tool and associated task
The eikosogram—a word constructed from the Greek words eikos, meaning probability, and gramma, meaning 
drawing or picture—first appeared in the work of Oldford and Cherry (2006) who argued persuasively that 
eikosogram diagrams facilitated the study of probability. Noting the research findings concerning Bayesian-
type problems and frequency table interpretation, we developed an eikosogram-type visualisation which was 
aimed at enhancing students’ proportional reasoning when developing conditioning concepts. The associated 
task involved two variables, eye colour and gender, and was based on a question posed in the work of Froelich 
and Stephenson (2013). The task and two eikosogram representations of the data are shown in Figure 2. 
Representation (a) has eye colour on the horizontal axis while representation (b) has gender on the horizontal 
axis (http://4ddsyv3x.docker.stat.auckland.ac.nz/).

Figure 2. Task introduction and two eikosogram representations of the eye colour and gender data

Pre-task questions

(a)	 Do you think that an individual’s eye colour depends on whether that individual is male or female?

(b)	Assume that eye colour is taken to be one of five possibilities: 

Brown, Blue, Hazel, Green, Other

(i)	 In NZ, what proportion of the population do you estimate to have brown eyes?

(ii)	 Provide a representation of your estimated distribution of eye colour.

(iii)	If eye colour and gender are independent, provide a representation of your estimated distribution 
of eye colour and gender.

Repeat part (iii) under the assumption that eye colour and gender are dependent.

(a)
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(b)

The rationale for the task introduction was to have the students make conjectures based on their intuition 
and contextual knowledge which required them to understand the situation presented and to engage with 
the problem. Furthermore, the questions posed in the task introduction served to incentivise the students to 
test their conjectures against the data and to reflect on their representations compared to the eikosogram 
representation. The eikosogram provides a visual representation of a two-way table of information. Figure 
2 illustrates the non-numeric format of the eikosogram, but there is the option of adding counts and/
or proportions. When the Show independence checkbox is ticked, the resulting representation depicts the 
eikosogram under the condition that eye colour and gender are independent. The task and tool together 
address some of the identified problematic areas and incorporate several of the strategies suggested by the 
interviewees. 

The theoretical framework used for analysing the student data was informed by research in the domain of 
graphicacy (Friel, Curcio, & Bright, 2001) and includes additional components relating to versatile thinking 
(Thomas, 2008), the effect of context (Watson & Callingham, 2014), and the integration of contextual and 
statistical knowledge (Wild & Pfannkuch, 1999). See Pfannkuch and Budgett (in press–b) for more detail on the 
theoretical framework.

Although the students had prior experience of interpreting two-way tables, they struggled initially with the 
unfamiliar eikosogram representation. They needed time to decode the horizontal and vertical dimensions 
in the context of the problem. While this decoding led to extracting information and verbalising simple 
probability statements, all students required prompting in order to find relationships, provide fuller language 
verbalisations, and to explicitly determine the conditioning event when forming conditional statements. 
However, having invested both time and effort in their first interaction with the eikosogram, when they swapped 
factors and interpreted the eikosogram from a different perspective, they were able to integrate what they 
had previously learned and voluntarily remarked on the relationship between proportions and counts. This 
relationship seemed to be a revelation to the students since they returned to this idea several times, including 
when the counts and proportions were put on the eikosogram. An example is given in the following excerpt 
between two students, Leo and Martin.

 Leo:	 You can see that the female box looks slightly wider than the male box cause I’m assuming 
more females responded to the survey.

Martin:	 Yeah.

Leo: 	 But you can see that the proportion of males with blue eyes is higher than the proportion of 
females with blue eyes because it’s higher that way.
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Martin: 	 But then that’s sort of what I was getting at because it does look higher if you are just looking 
at it this way, it looks bigger, but then when you factor in the width as well you are not, at least 
yeah I would say it’s bigger but I am not sure.

Leo: 	 The proportion is bigger. The total number might not be bigger but the proportion is definitely 
higher because you can see the bar is just higher.

Interviewer:	 So when you are saying the proportion, the proportion of what?

Leo:	 The proportion of blue, yeah blue-eyed males is higher than the proportion of blue-eyed 
females.

Martin:	 But it doesn’t necessarily mean that there’re more blue-eyed males than blue-eyed females.

Hugo and Helen had a similar conversation:

Hugo:	 More males than females have blue eyes.

Helen:	 No, not necessarily. I think the areas are equal but that is higher because this is a less wide 
one.

Hugo:	 Right so you would have to do the conditional to say that. So the probability somebody has 
blue eyes given that they are male is higher than the probability that somebody has blue eyes 
given that they are female… [after struggling with the idea] … if the areas are the same and 
you pick a random point you are just as likely to be in that box as that box. But as soon as you 
condition… it wouldn’t be equal.

When the students were asked to explore relationships between other categorical variables that were available 
to them, they were able to integrate all of the information they had gleaned from interpreting the eikosogram. 
They readily verbalised conditional statements, considered independence in connection with conditional 
statements, and justified their perception of independence from both a contextual perspective and a statistical 
perspective.

Student reflections indicated that the visualisation of two-way table information, including the swapping of 
factors facility, was helpful. They mentioned that it was useful to start with a non-numeric eikosogram since 
they believed that representing proportions as areas gave them a better intuitive sense of the weightings and 
influences of each possible outcome.

The conventional representation for displaying the relationship between two categorical variables is numerically 
as proportions or frequencies in a two-way table. For learning purposes, however, introducing students first to 
the non-numeric visual eikosogram may be beneficial to promote students’ proportional reasoning, to enhance 
their appreciation of the relationship between and among the data cells and to learn how to tell stories about 
the information contained therein.

The Markov tool and associated tasks
The Markov chains tool (https://www.stat.auckland.ac.nz/~wild/MarkovChains/markov.html#) was based on a 
dynamic visualisation developed by Victor Powell on the Setosa blog (see: http://setosa.io/blog/2014/07/26/
markov-chains/). The first two associated tasks involved a car rental agency context while a third task involved a 
cut-down version of a Snakes and Ladders game. The tasks (see Appendix 1) provided relatable contexts, built 
on students’ prior knowledge, and required them to make conjectures about the equilibrium and hitting times 
distributions before they interacted with the tool to test their conjectures.

Data are entered in the transition matrix and then a state diagram, with arrows proportional to their 
probabilities appears, which can be repositioned in its designated space (see Figures 3 and 4). The simulation 
can start in any state and, in the case of determining the hitting times, can end in any state. As the simulation 
progresses, the three representations (state diagram, transition matrix, distribution) are active and linked 

https://www.stat.auckland.ac.nz/~wild/MarkovChains
http://setosa.io/blog/2014/07/26/markov-chains/
http://setosa.io/blog/2014/07/26/markov-chains/
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while the distribution gradually builds up. For example, in Figure 3 the transition from D to B is simultaneously 
highlighted in the matrix and diagram. The animation can be sped up or turned off and up to 1,000 simulations 
can be conducted. For the hitting times distribution a sound feature was added to denote a hit on the end state, 
which simultaneously visually enlarges. Current and previous hitting times are also recorded (see Figure 4).

Figure 3. Equilibrium distribution screen for Markov Chains Task 2 for four car rental offices
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Figure 4. Hitting times distribution screen for Markov Chains Task 2 for four car rental offices

The Markov tasks required the students to first make conjectures based on their intuition and contextual 
knowledge. As for the eikosogram, the Markov tasks and tool together address some of the identified 
problematic areas and incorporate several of the strategies suggested by the interviewees. 

The theoretical framework supporting the Markov tasks and tool and used for analysing the student responses 
was the six-principle framework outlined earlier in this report. The six principles were based on literature 
derived from a number of different sources. For example, the principle linking representations was based upon 
the versatile thinking framework proposed by Thomas (2008). Thomas’ assertion that using and thinking with 
representations plays an essential role in the development of mathematical (or probability) thinking, together 
with his observation that the flexible use of representations assists students to develop rich schema and 
conceptual understanding, are significant when considering how students might interact with the Markov 
tool and tasks. Furthermore, Graham, Pfannkuch, and Thomas (2009) demonstrated how the development 
of concepts in statistics could arise using technology-linked representations, while Pfannkuch, Budgett, and 
Thomas (2014) provided indirect evidence that technology designed for learning inferential concepts through 
linking representations seemed to promote concept formation. Further detail on the six-principle theoretical 
framework is provided in Pfannkuch and Budgett (in press–a).

Using their prior knowledge, all of the students were able to draw the state diagram and put it into matrix 
format for the scenarios described in the tasks. All but one of the students were able to explain how the 
dynamic representations of the transition matrix and state diagram in the tool related to the context of the 
problems, and how the Snakes and Ladders game, which they physically played with a board and a die, was 
related to the matrix. An example of one pair of students’ exploration of the tool involves Mark and Cameron, 
who were asked in the context of four rental car offices (see Appendix 1 and Figure 3) to rank intuitively the 
probabilities for the equilibrium distribution from highest to lowest. Mark suggested B would have the highest 
probability because it is the “one with the biggest probability coming in.” They looked at the matrix (Figure 3) 
and came up with the idea of summing the probabilities in the column to rank the equilibrium distribution 
probabilities. Cameron: “I think it is the sum. Cause for this like [refers to Column B, see Figure 3] you add like, 
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even if you do the equilibrium you add them up [we believe he is referring to how the equilibrium distribution is 
calculated], right you add them up.” Using this conjecture, they rank the probabilities as B > D > C > A. They then 
watched the simulation to test their conjecture, with the following discourse: 

Mark:	 Oh no!

Cameron:	 A is actually bigger than C. [They realise it is a simulation and check the theoretical values.]

Mark: 	 So you were right. So you can just sum down it (the columns) effectively.

Cameron: 	 It may not be that accurate but it should be around (that)…

Mark: 	 Don’t know if it (the conjecture) is true. Might be … And the reason I say that it is [true], because 
these are the probabilities coming in [to each state] and the probabilities coming in should be 
directly related to the equilibrium distribution, if there is one.

The interaction between Mark and Cameron in the above excerpt is an illustration of how all the students 
operated throughout all three Markov tasks: make a conjecture, do the simulation, test the conjecture against 
the simulation, analyse why the conjecture is correct or incorrect. From these students’ interactions with the 
equilibrium distribution we note they were engaged, and reasoning at quite a deep level from the numerical 
matrix representation to conjecture how it could be linked to the distribution representation. In doing this, the 
students not only engaged with probabilistic ideas and reasoning, but persevered in trying to grasp how the 
Markov process worked.

Post-task reflections indicated that the students valued the dynamic visual imagery offered by the tool. Their 
comments suggested that the mathematical approach, with its dense notation, can be confusing. They also 
mentioned that using their intuition, in the form of making a conjecture, was useful since they thought this type 
of reasoning was important to see if an answer was sensible.

Markov processes are traditionally taught from a mathematical perspective. We believe that accompanying 
dynamic visualisations and tasks which engage students in making and testing conjectures may promote deeper 
probabilistic reasoning.

The pachinkogram and associated task
The pachinkogram (see: https://www.stat.auckland.ac.nz/~vt/) is a visual representation of the traditional 
probability tree. However, the branches of the pachinkogram are proportional in size to their respective 
probabilities (see Figure 5). The task accompanying the pachinkogram (see Appendix 2), based on a contextually 
relatable medical screening situation and similar to those commonly found in the literature (e.g., Gigerenzer, 
2002), was designed to address the base rate fallacy and the confusion of the inverse misconception.

Probabilities on the pachinkogram branches can be changed by sliding the bars on the branches, and the user 
is able to decide on a sample size for their simulation. For each simulation, dots corresponding to each member 
of the sample flow down the pachinkogram branches dynamically and end up in the “buckets” at the bottom 
(see Figure 5(b) for a screenshot captured towards the end of one simulation). An eikosogram sits alongside the 
pachinkogram which can be manipulated (as in the swap factors facility of the eikosogram tool) to consider and 
interpret probabilities with inverted conditions. 
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Figure 5. Pachinkogram with default settings of equal probabilities on each branch (a)  and settings 
corresponding to one of the task situations (b)

(a)
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(b)
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The pachinkogram task again sought students’ conjectures about the approximate values or ranges 
of probabilities, and the impact of alterations to the probabilities associated with the branches of the 
pachinkogram. The pachinkogram tool links the dynamic, proportional probability tree on the left-hand side of 
the display to the eikosogram and graph at the right-hand side of the display. As before, the pachinkogram task 
and tool together address some of the identified problematic areas and incorporate several of the strategies 
suggested by the interviewees. 

Some preliminary findings regarding the students’ interactions with, and reasoning from, the pachinkogram 
tool and task are presented in this report. A review and synthesis of the theoretical frameworks proposed 
in the Bayesian reasoning literature  (e.g., Garcia-Retamero & Hoffrage, 2013, Gigerenzer & Hoffrage, 1995, 
Kahneman, 2011) will be undertaken to inform and guide the in-depth analysis of student reasoning from the 
pachinkogram tool and task.

Three of the six students appeared to demonstrate the confusion of the inverse misconception in their intuitive 
answer to the first question in the task; that is they confused P (Diabetic/Positive) with P (Positive/Diabetic) 
in their answer to Question 1 of the task (see Appendix 2). However, when they were asked to modify the 
pachinkogram default settings to represent the situation presented to them, they appeared to gain more clarity 
on what the question was asking them. They observed that of those who tested positive, a sizeable number 
were in fact non-diabetics who were incorrectly classified as diabetics. As Xavier noted, “I can see the visual of 
how it works”, while Ailsa and Brad had an involved discussion before Brad’s conclusion that “we were looking 
at it the other way around”. When asked if the base rate was a necessary piece of information to answer some 
of the task questions, Harry and Hope said no. However, having used the tool to answer some more of the 
questions they quickly realised that a change in the base rate of diabetes in a given population does have an 
effect on the numbers ending up in the buckets at the bottom of the pachinkogram, and hence on the value 
of P (Diabetic/Positive) In a subsequent section of the task, several seemingly identical questions were asked, 
although each had a different base rate. The students now recognised that a change in base rate would have an 
impact on the width of the branches of the pachinkogram and all were able to improve on their initial intuitions. 
For example, when Xavier and Lorraine were asked, prior to running a simulation with a newly specified base 
rate, what they expected to see in the buckets at the bottom of the pachinkogram, they responded:

Xavier:		 There will be more in this one [pointing to the left-most bucket]

Lorraine:		 There will be quite a lot in the true positive one [pointing to the left-most bucket]. These ones 
(the left-most and right-most buckets) will probably be relatively the same, I mean they will both 
be big ones. The other ones, not so much.

Xavier:		 But they will be more than that one because that one is bigger than that one.

The conversation above, in conjunction with accompanying gestures, illustrates that these students were 
attending to the width of the pachinkogram branches and anticipating the resulting effects. As Harry also 
noted: “The more you do it the more you see how things affect it and change it and even just little changes 
as opposed to big changes, you kind of get better at predicting … I kind of have more of a feel for where the 
numbers should lie.” 

The conventional way of answering questions such as those posed in the pachinkogram task would either be 
by using a probability tree, or using a mathematical formula, or by constructing a two-way table of information. 
The post-task student reflections suggested that the effects of changing the base rate were clearly visible in the 
pachinkogram since the widths of the branches also change. Lorraine recalled that she had been instructed to 
tackle problems like these by constructing a two-way table of frequency information. However, when it came 
to an exam question, she stated: “I had forgotten how we did it … a whole lot of equations, one after the other, 
numbers, numbers, numbers”. When compared to probability problems usually encountered in their probability 
courses, the context of the problem seemed to influence the students’ engagement. Hope observed that “in 
class we mostly see probabilities as numbers on a piece of paper and that connection to the real world, and 
seeing just how changing one little thing can make a huge difference or it can make not much of a difference at 
all depending on where it is, it’s really kind of cool. Not something I thought about.”
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The pachinkogram shows promise as a visual tool to help overcome some common probability misconceptions 
such as the base rate fallacy and confusion of the inverse. 

The Poisson process tool and associated tasks
The Poisson process tool was designed with the overarching goal of making transparent the link between 
exponentially-distributed waiting times and Poisson-distributed counts. This was mentioned by one practitioner 
interviewee as an important concept and we saw the potential to incorporate the building blocks of distribution, 
randomness, and mathematics for probability thinking and modelling (see Figure 1) into the tool. The Poisson 
tasks (see Appendix 3) involved data relating to FIFA World Cup soccer tournaments (Chu, 2003), data relating 
to inter-bus arrival times (Molnar, 2008), and a media article reporting on the incidence of murders in New 
Zealand. These were chosen as relatable contexts to promote student engagement.

When waiting times between events (e.g., goals) are entered, the tool displays the events dynamically as little 
matchsticks which appear on a timeline (see Figure 6). The events are displayed according to the unit of input 
waiting time but can be adjusted to reflect the particular situation. For example, it makes little sense to talk 
about the number of goals scored per minute in a series of soccer games, but it does make sense to talk about 
the number of goals scored per game. Thus the Multiply count interval box has been changed to reflect this. 

The Poisson task again sought students’ conjectures about the shape of waiting time distributions and count 
distributions before the students’ interaction with the tool. The tool links continuous waiting times to discrete 
counts and visually conveys randomness through the dynamic appearance of the matchsticks. Similarly to the 
three tools already described, the Poisson task and tool together address some of the identified problematic 
areas and incorporate several of the strategies suggested by the interviewees. 

Some preliminary findings regarding the students’ interactions with, and reasoning from, the Poisson tool and 
task are presented in this report. A more detailed analysis will be carried out with reference to the six-principle 
theoretical framework described briefly in the section in this report on Task Two and the Markov Tool, and more 
fully in Pfannkuch and Budgett (in press–a).

Figure 6. Poisson process tool inputing real waiting time data and observing counts

Time was taken to ensure that the students recognised where the numbers on the Actual events timeline came 
from. The first four waiting time values of 9, 48, 16, and 2 resulted in four goals being scored in one 90-minute 
period, giving rise to 4 in the first game. The fifth waiting time value of 149 meant that there were no goals 
scored in the next game, hence the 0 for the second game. Three goals were then scored in the third game. 
Having spent some time linking the waiting times to the counts, observing the goals being scored, and thinking 
about the context, the students were asked to imagine what the waiting time distribution would look like. Max’s 
conjectured distribution (see Figure 7(a)) is a typical example. The actual waiting time distribution is shown 
alongside in Figure 7(b).
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Figure 7. Max’s predicted distribution of the waiting time (a) and actual distribution of  
waiting time (b)

(a) (b)

While Figure 6 illustrates inputting waiting time data, there is also the option of simulating constant waiting 
times or waiting times from several distributions, namely the exponential, uniform, triangular, and symmetric 
triangular distributions. Figure 8(a) shows the waiting times and corresponding goals simulated from a uniform 
distribution.

Figure 8. Poisson process tool simulating uniformly distributed waiting times (a) and checking how 
well the resulting counts fit a Poisson distribution (b)

(a)
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(b)

The students then simulated the waiting times between goals for these different distributions and in each case 
sketched their predictions of the distribution of the number of goals scored per game. They then switched to 
the Fit Distribution tab (see Figure 8(b)) to observe the distribution of the number of goals scored per game. 
Checking the Show fitted distribution box superimposes a Poisson distribution. Where waiting times have been 
simulated from a uniform distribution, a Poisson distribution does not fit the resulting number of goals scored 
per game distribution particularly well (see Figures 8(a) and 8(b)).

Conventionally, students learn about the Poisson distribution by being presented with the definition of a 
Poisson process and being given the formula for the probability function. They may also experience how 
the shape of the probability function changes for different values of the parameter λ. However, they do not 
experience directly the randomness underlying the Poisson process. Furthermore, the connection between the 
Poisson distribution and the exponential distribution is given a theoretical treatment which may not be obvious 
to all students. Preliminary findings suggest that the dynamic visualisations afforded by the Poisson tool develop 
in students an awareness and appreciation of randomness and distribution and of the underlying structure 
within the mathematical representations. In addition, the connection between the distribution of inter-event 
waiting times and the distribution of the event counts is made more transparent.

Limitations
The main limitation of this research study is the fact that it was conducted on a small group of students 
who had already completed an introductory course in probability. Ethics requirements meant that we could 
not recruit them before or during the course. Hence the participating students would already have had a 
mathematical understanding of many of the concepts addressed in the study. In the study, students interacted 
in pairs, with ample time devoted to understanding the processes they were observing. The utility of these tools 
in other settings such as large classrooms, and for students of varying ages and abilities, is therefore unknown. 

Major implications
Our interviews with practitioners indicate that seeing structure and applying structure are important 
characteristics of probability modellers. These characteristics develop over time, leading to something akin 
to an intuition when faced with a new problem situation. To begin to build this intuition in students, we need 
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to expose them to a diverse range of learning experiences in multiple contexts, and to implement teaching 
strategies that deliberately enhance transferability to new situations. 

While the four software modelling tools developed in this study show promise in developing students’ 
probability modelling skills, our findings suggest that the some of the tools require further development. For 
example, because initial decoding of the eikosogram in two dimensions appeared difficult for students, we 
plan to first introduce students to a one-dimensional eikosogram. We also plan to modify the eikosogram to 
display both joint and conditional probabilities and to develop strategies designed to transition students from 
the visual representation of these probabilities to their mathematical representations. Preliminary analysis of 
student interaction with the pachinkogram suggests that we need to develop methods to transition students, 
both visually and cognitively, from the pachinkogram buckets to the actual probabilities represented in the 
linked eikosogram and probability graph. Similar to the suggested eikosogram modifications, we also need 
to develop ways of scaffolding students’ transition from the visual representation of probabilities to their 
mathematical representations. We also recognise the potential for the Poisson tool to be further augmented 
to include the ability to record and display previous simulations so that students can visually track the variation 
in distributional shape, an important idea related to one of the building blocks for probability thinking and 
modelling.

Although the tasks and tools developed in this study show promise, their implementation is not simple. Due 
to the exploratory nature of the study, we were able to give the students time to make and rationalise their 
conjectures prior to using the software tool which we believe was a necessary precursor for stimulating the 
desired thinking.  For teaching purposes in a larger classroom setting, the cycle of conjecture, do, test, and 
analyse would need very careful consideration around the pedagogy about how to scaffold the students’ 
thinking and how to draw their attention to salient features of the visualisations. 

As an exploratory study, where the participating students had already completed an introductory probability 
course and interacted with the tasks and tools in a semi-structured environment, the findings are tentative. It 
remains for a larger study, undertaken with students of varying abilities, and within typical classroom settings, to 
further investigate the utility of the dynamic visualisations described. 
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Appendix 1
Markov tasks

Task 1

AA Rentals is a small rental car agency located in Auckland. The agency currently has two pick-up/drop-off 
offices, one located in the central city and the other located at the airport. Customers may rent a car from either 
location, and return a car to either location. Over time, the manager notices that about 40% of cars rented from 
the central city are returned to the central city, while about 80% of cars rented from the airport are returned to 
the airport.

(a)	 Draw a transition diagram for this situation.

(b)	Write down the transition matrix for this situation.

(c)	 Calculate the equilibrium distribution for this situation. Interpret what this means for AA rentals.

(d)	 If a car is picked-up in the central city, how many times would you expect it to be hired out before it arrives 
at the airport? Give an intuitive answer. Now sketch a distribution of the number of times the car is hired out 
before it arrives at the airport. What range do you expect?

(e)	 If a car is picked up in the central city, how many times would you expect it to be hired out before it is 
returned back to the central city? Give an intuitive answer. Now sketch a distribution of the number of times 
the car is hired out before it returns to the airport. What range do you expect?

(f)	 Use the software tool to model this situation and compare with predictions.

Task 2

AA Rentals expands their business by introducing two further pick-up/drop-off offices, one in Christchurch and 
one in Wellington. Over time, records suggest that rental cars picked up from Auckland central city are dropped 
off at locations Auckland central city, Auckland airport, Christchurch and Wellington with probabilities 0.2, 0.6, 
0.1 and 0.1 respectively. Corresponding probabilities for rental cars are 0.1, 0.7, 0 and 0.2 for cars picked up 
from Auckland airport, 0, 0.3, 0.6 and 0.1 for cars picked up from Christchurch, and 0, 0.4, 0.1 and 0.5 for rental 
cars picked up from Wellington.

(a)	 Draw the transition diagram for this situation.

(b)	Write down the transition matrix for this situation.

(c)	 Describe the equilibrium distribution; intuitively rank the probabilities from highest to lowest. Interpret what 
the equilibrium distribution means for AA rentals.

(d)	 If a car is picked up in Auckland city centre, how many times would you expect it to be hired out before it 
arrived at Auckland airport (Christchurch, Wellington) – or was returned to Auckland city centre? Intuitively 
rank and estimate the expected times of these scenarios from highest to lowest. Sketch the distributions. 
What range do you expect?

(e)	 Use the software tool to model this situation and compare with predictions.

Task 3

A cut-down version of the popular board game Snakes and Ladders has been devised. Consider the following 
board.
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The rules are as follows:

Each player is required to roll a ‘6’ before being eligible to move on to the Start box. Once a player is in the Start 
box, their next roll of the die determines how many squares they travel. The first person to reach the ninth 
square is deemed the winner. A player is not required to reach the ninth square exactly, i.e. a player on square 
6 who throws a 3 or higher will reach square 9.

(a)	 Play the game several times, each time recording the number of throws of the die required for a win.

Game Number of rolls of die
1
2
3
4
5
6
7
8
9
10

Here is the transition matrix for the Snakes and Ladders game.

(b)	Why are there only seven states for this game? Identify the states and label them on the board.

(c)	 Explain the first line of the transition matrix. Explain the fifth line of the transition matrix.

(d)	How many rolls of the die do you expect to make before you win the game? Give an intuitive answer. Now 
sketch a distribution of the number of times the die is rolled before you win the game. What range do you 
expect?

(e)	 Use the software tool to model this situation and compare with predictions.
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Appendix 2
Pachinkogram task
A new housing development has been built in your neighbourhood. In order to service the needs of this new 
community, a new health clinic has opened. As part of the health clinic’s enrolment procedure, new patients are 
required to undergo health check-ups which include, among other things, a series of blood tests. One such test 
is designed to measure the amount of glucose in an individual’s blood. This measurement is recorded after the 
individual fasts (abstains from eating) for a prescribed period of time. Fasting blood glucose levels in excess of 
6.5mmol/L are deemed to be indicative of diabetes. This threshold of 6.5mmol/L works most of the time with 
about 94% of people who have diabetes being correctly classified as diabetics and about 98% of those not 
having diabetes being correctly classified as non-diabetics.

The prevalence of diabetes in the NZ population is about 7%1 (i.e. approximately 7% of the NZ population are 
estimated to have diabetes).

*Graph above taken from Pfannkuch, Seber, & Wild, 2002

1.	 As part of enrolment in this health clinic, an individual has a fasting blood test. He/she is told that his/her 
blood glucose level is higher than 6.5mmol/L. What are the chances he/she has diabetes?

2.	 As part of enrolment in this health clinic, a male aged between 65 and 74 has a fasting blood test. He is told 
that his blood glucose level is higher than 6.5mmol/L. What are the chances that he has diabetes?

3.	 As part of his enrolment in this health clinic, a person of Pacific ethnicity and aged over 75 has a fasting 
blood test. He/she is told that his/her blood glucose level is higher than 6.5mmol/L. What are the chances 
that he/she has diabetes?

4.	 Suppose the threshold for diagnosing a person with diabetes is changed to 6mmol/L. Someone from the 
general population (no further information available) is told that his/her blood glucose level is higher than 
6mmol/L. What are the chances that he/she has diabetes?

5.	 The Ministry of Health has a fixed amount of financial resources for a new diabetes treatment initiative and 
needs to decide how to allocate funds in order to optimize the treatment of New Zealanders. Part of this 
optimization process requires information on the expected number of people with diabetes enrolling in a 
particular health clinic.
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A health clinic for approximately 10,000 patients is situated in Mangere-Otahuhu. Suppose that everyone 
enrolled in the health clinic has a blood test for diabetes.
(i)  Estimate the number of people enrolled in this health clinic that test positive for diabetes.
(ii) Estimate the number of people enrolled in this health clinic that are diabetic but test negative.

6.	 Repeat question 5 where a health clinic for approximately 10,000 patients is situated in Devonport-
Takapuna.
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Appendix 3
Poisson processes tasks
1.	 Large amounts of data are routinely collected from large sporting events such as the FIFA World Cup. For 

example, data on the times at which goals were scored in all games in the 2014 World Cup are available 
from www.fifa.com/worldcup/archive/brazil2014/matches/index.html. We have access to inter-goal waiting 
time data from the 1990, 1994, 1998 and 2002 World Cups held in Italy, the USA, France and Korea/Japan 
respectively.  (The data on inter-goal waiting times for the four World Cups held between 1990 and 2002 
was kindly provided by Singfat Chu-Chun-Lin, National University of Singapore.) Note that any goals scored in 
extra time, that is, after the 90-minute match duration, have been excluded.

(a)	 Using this data and the software tool, explore the distribution of the waiting times between goals. 
Comment on what you see.

(b)	By manipulating the Multiply count interval box, predict the expected number of goals scored per match.

(c)	 Observe the distribution of the number of goals scored per match. Is the Poisson distribution a 
reasonable model for this situation? Explain your answer, including discussion of the underlying 
assumptions of the Poisson model.

2.	 Students in an introductory statistics course at a US university were set the task of collecting data on bus 
schedules in Chicago. Each student was allocated a 2-hour block during the rush hour (3pm to 7pm, Monday 
to Friday) and sat at the same designated stop noting the time of every arrival of the #55 bus along with 
other various pieces of information.

(a)	 Using this data and the software tool, explore the distribution of the waiting time between buses. 
Comment on what you see.

(b)	By manipulating the Multiply count interval box, predict the expected number of buses arriving in a 
1-hour period.

(c)	 Observe the distribution of the number of buses arriving per hour. Is the Poisson distribution a 
reasonable model for this situation? Explain your answer, including discussion of the underlying 
assumptions of the Poisson model.

3.	 In Questions 1 and 2, you used actual data to discover whether or not the Poisson model provided a 
reasonable approximation to two realities; the first being the expected number of goals in a World Cup 
match, the second being the expected number of buses to arrive at a particular bus stop in a 1-hour period. 
You should now have an estimate of the expected number of goals scored in a World Cup match (your 
answer to 1(b)).

	 The software tool is able to simulate waiting times with different generating distributions. Simulate waiting 
times between goals in World Cup matches for each of the five generating distributions (Constant, Uniform, 
Exponential, Triangular, and Symmetric Triangular) using your answer to 1(b) as the input for Rate λ per 
match. Which, if any, provides the best approximation to reality? What conclusions can you make about the 
waiting time between successive goals in World Cup matches?

http://www.fifa.com/worldcup/archive/brazil2014/matches/index.html
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